Improving communication security of open source UAVs: encrypting Radio Control link

Michal Podhradský

Galois Inc.

ICUAS 2017

Michal Podhradský - Improving communication security of open source UAVs: encrypting Radio Control link

Communications security

Communications security (COMSEC) is the discipline of preventing unauthorized interceptors from accessing telecommunications in an intelligible form, while still delivering content to the intended recipients [Wikipedia]

Why should we care?

Known attacks and existing tools:

- **Icarus**: Jonathan Andersson's attack on DSMx with SDR
- **Skyjack:** attack on ArDrone via WiFi
- Dronedefender from Batelle

イロン イロン イヨン イヨン

Why should you care?

- 1 Increased reliability
- 2 Demonstrating the "best practices"

Different levels of security

- 1 encryption (our talk)
- 2 secure-by-design / memory-safe languages (SMACCMPilot)
- **3** formally verified (seL4 microkernel)

Different levels of security

1 encryption (our talk)

- 2 secure-by-design / memory-safe languages (SMACCMPilot)
- 3 formally verified (seL4 microkernel)

Current situation

To this date, no consumer grade encrypted radio control link available on the market!

Current situation

Users who care about functionality

Users who care about security

Ideal situation

Michal Podhradský - Improving communication security of open source UAVs: encrypting Radio Control link

Motivation Encryption Solution Implementation Results & Future work

Solution

Michal Podhradský – Improving communication security of open source UAVs: encrypting Radio Control link

10/26

Requirements

- **1** use the same hardware as stock RC modules
- 2 no hardware modifications
- 3 use strong and properly implemented cryptography algorithm
- 4 maintain a reasonable bandwidth in comparison with an unencrypted link
- 1. and 2. are necessary to make encrypted RC link accessible to a broad spectrum of users, while 3. and 4. are necessary for the functionality.

(日) (國) (王) (王)

Symmetric key problem ^{ChaCha example}

- IV initialization vector
- K symmetric key
- || concatenation
- *E*()/*D*() encryption/decryption
- P plaintext
- C ciphertext

$$E_K^{IV}(P) = C$$
$$D_K^{IV}(C) = P$$

(日) (四) (三) (三) (三)

Symmetric key problem ^{ChaCha example}

Constructing a message:

$$E_{K}^{IV}(P) = C$$
$$msg = IV||C||Auth()$$

But:

•
$$E_{K}^{IV_{1}}(P_{1}) = C_{1}$$
 and $E_{K}^{IV_{2}}(P_{2}) = C_{2}$

Problem if
$$IV_1 = IV_2$$

Possible to execute attack on one-time pad!

Use permanent key only for the key exchange!

Definitions

- TX transmitter module
- RX receiver module
- K_p permanent key
- K_e ephemeral TX key
- *K_{e'}* ephemeral RX key
- RNG random number generator (use ChaCha)

(日) (四) (三) (三) (三)

Key exchange protocol

(日) (四) (三) (三) (三)

Ongoing communication

 $m_i^{TX} = E_{K_e, IV^{TX}}(data) = IV_{32bit}^{TX} || ChaCha_{20}(data)_{datalength} || Poly1305()_{96bit}; IV^{TX} = (i+1) \times 16$

 $m_{j}^{RX} = E_{K_{s'}, IV^{RX}}(data) = IV_{32bit}^{RX} ||ChaCha_{20}(data)_{datalength}||Poly1305()_{96bit}; IV^{RX} = (j+1) \times 16$

Motivation Encryption Solution Implementation Results & Future work

Implementation

Michal Podhradský — Improving communication security of open source UAVs: encrypting Radio Control link

17/26

OpenLRSng openIrsng.org

- open source (GPL licence)
- readily available HW
- 40km+ range
- popular
- uses Arduino (limited memory and power!)
- can use existing Arduino Crypto library
- nice configuration GUI

Memory footprint

variable	size [bytes]
ChaChaPoly	221
K _p	32
K _e	32
$K_{e'}$	32
IV_rand	4
$IV_{-}RX$	4
IV_TX	4
cnt_RX	4
extra buffer TX	16
extra buffer RX	16
Total memory	365

Michal Podhradský - Improving communication security of open source UAVs: encrypting Radio Control link

イロン イボン イモン イモン 一日

Time overhead

operation	time $[\mu s]$
encrypt/decrypt (per byte)	15
hashing (per byte)	26
key setup	43
finalize hash	500
Total time (one-device)	1404
Total time (plaintext-to-plaintext ¹)	2808

¹on top of transmission delay

Time overhead

operation	time [<i>ms</i>]
crypto overhead	3
trasmission time	20
Total time per packet ² (no crypto)	20
Total time per packet ³ (crypto)	23
Max packet frequency (no crypto)	50 [Hz]
Max packet frequency (crypto)	40 [Hz]

Theoretically only 20% slower.

²21 bytes ³37 bytes

Motivation Encryption Solution Implementation Results & Future work

Results & Future work

Michal Podhradský - Improving communication security of open source UAVs: encrypting Radio Control link

22/26

OpenLRSng openIrsng.org

| g |

- readily available HW only one store, long shipping delays, faulty hardware
- 2 popular only one semi-active maintainer, not much community support
- 3 code structure not compatible with added encryption without major refactoring

Current status

Code at: https://github.com/podhrmic/openLRSng

- 1 Complete encryption algorithm
- 2 RNG for embedded devices
- 3 Proof-of-concept arduino sketch
- Initial refactoring work

Future work

Code at: https://github.com/podhrmic/openLRSng

- 1 Remove unused features (bind, etc.)
- 2 Major code refactoring
- 3 open-source TX HW
- 4 switch to Arduino-Makefile
- 5 formally verify Arduino Crypto Lib

Future work

| g |

Code at: https://github.com/podhrmic/openLRSng

Help welcome!

Michal Podhradský - Improving communication security of open source UAVs: encrypting Radio Control link